# Novel independent dosimetry audit based on end-to-end testing in proton beam therapy.

**A. Carlino<sup>1</sup>**, H. Palmans<sup>1,2</sup>, C. Gouldstone<sup>2</sup>, P. Trnkova<sup>3</sup>, G. Bosmans<sup>4</sup>, G. Vilches Freixas<sup>4</sup>, I. Rinaldi<sup>4</sup>, O. Noerrevang<sup>5</sup>, H. Nyström<sup>5</sup>, A. Vestergaard<sup>5</sup>, S. Lorentini<sup>6</sup>, C. Algranati<sup>6</sup>, M. Schwarz<sup>6</sup>, S. Vatnitsky<sup>1</sup>, M. Stock<sup>1</sup>

- 1 MedAustron Ion Therapy Center, Marie Curie-Straße 5, 2700 Wiener Neustadt, Austria.
- 2 National Physical Laboratory, Hampton Road, TW11 0LW Teddington, United Kingdom.
- 3 HollandPTC, Huismansingel 4, 2629 Delft, The Netherlands
- 4 Zuid-Oost Protonen Therapie Centrum (ZON-PTC), Maastricht, The Netherlands
- 5 Dansk Center for Partikelterapi (DCPT), Aarhus Universitetshospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus, Denmark
- 6 Centro di Protonterapia, APSS, Via al Desert 14, 38122 Trento, Italy

# MedAustron Ion Therapy Center

20

22

dose

with

#### Introduction

The purpose of end-to-end testing (E2E) is to confirm that the entire logistic chain of a radiation treatment starting from CT imaging, treatment planning, patient positioning and verification and beam delivery is adequately implemented resulting in sufficient accuracy of planned dose delivery. A novel methodology for dosimetric E2E test was established at MedAustron Ion Therapy Center in proton beams. In this work, we present the dosimetric audit based on E2E tests performed at 5 scanned proton therapy facilities in Europe including overall 7 beam lines. All the data reported in this work are anonymized.

#### Results

For single beam plans at the homogeneous polystyrene phantom the average deviation overall the 7 beam lines between the dose determined with 20 alanine pellets compared to the TPS dose was -0.1 ± 1.0 % (see fig. 2 (a)). For single beam plans delivered to the head phantom the average deviation overall the 7 beam lines between the dose determined with 22 alanine pellets compared to the TPS dose was -0.2 $\pm$  1.2 % (see fig. 2 (b)). Dose determined with Farmer chamber compared to the TPS planned dose show similar behavior as the alanine with a

### Material & Methods

#### The E2E tests were performed at 7 beam lines as reported in table 1.

| Facility /when                   | Beam Line | S/C/SC* - Vendor            | OIS          | TPS/algorithm                                               | Table 1 : List of the 7<br>lines with additional d<br>on the date of E2E tests<br>accelerator type,<br>Oncology Information Sy<br>(OIS) installed, the Treat<br>Planning System (TPS)<br>dose engine commissi<br>for treatment plannin<br>each facility.<br>*S/C/SC = Synchrotron (SC)<br>Cyclotron (C) or<br>SynchroCyclotron (SC)<br>**HBL = fixed Horizontal<br>Beam Line<br>***VBL = fixed Vertical B<br>Line |
|----------------------------------|-----------|-----------------------------|--------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MedAustron (AT)/<br>Nov 2016     | IR3HBL**  | S - In-house                | In-house     | RayStation v5.0 /<br>Pencil Beam v3.5                       |                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MedAustron (AT)/<br>July 2017    | IR2HBL**  | S - In-house                | In-house     | RayStation v6.1 /<br>Monte Carlo v4.0                       |                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MedAustron (AT)/<br>March 2018   | IR2VBL*** | S - In-house                | In-house     | RayStation v6.1 /<br>Monte Carlo v4.0                       |                                                                                                                                                                                                                                                                                                                                                                                                                   |
| HollandPTC (NL)/<br>Sep 2018     | Gantry 2  | C - Varian ProBeam<br>v3.5  | ARIA v13.7   | RayStation v7 /<br>Monte Carlo v4.1                         |                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ZON-PTC (NL)/<br>Dec 2018        | Gantry    | SC - Mevion S250i           | ARIA v15.5   | RayStation v8A /<br>Monte Carlo v4.2                        |                                                                                                                                                                                                                                                                                                                                                                                                                   |
| DCPT (DK)/<br>Dec 2018           | Gantry 3  | C - Varian ProBeam<br>v3.5  | ARIA v13.7   | Eclipse v13.7/<br>Proton Convolution<br>Superposition v13.7 |                                                                                                                                                                                                                                                                                                                                                                                                                   |
| APSS (Trento, IT)/<br>March 2019 | Gantry 2  | C - IBA proteus plus<br>235 | MOSAIQ v2.64 | RayStation v7 /<br>Monte Carlo v4.1                         |                                                                                                                                                                                                                                                                                                                                                                                                                   |

A homogeneous polystyrene phantom [1] and two anthropomorphic phantoms (pelvis and head phantom) [2] have been customized to allocate different detectors such as radiochromic films, ionization chambers and alanine pellets. The phantoms were transferred through the workflow as real patients to simulate the entire clinical procedure [2]. The CT scans were acquired with predefined scan protocols used at each facility for cranial and pelvic treatments. Facility specific treatment planning was performed with 3 different version of RayStation and with Eclipse TPS (see table 1). A physical dose of 10 Gy was planned to regular-shaped target volumes. In the treatment room the plans were delivered to the phantoms loaded either with alanine pellets and radiochromic EBT3 films or ionization chamber (see figure 1). The alanine pellets (5.0 mm diameter and 2.4 mm thickness) and their read-out were provided by the National Physical Laboratory (NPL). Corrections for 'quenching' were derived by a Monte Carlo dose calculation platform implemented in a non-clinical version of the TPS RayStation v5.99.50 [2].

maximum deviation of  $-1.2 \pm 0.7$  % between the two dosimetric techniques (see fig. 3).





Figure 3: Relative deviations of the two dosimetric techniques alanine pellets vs Farmer chamber as function of the beam line number. In green the deviations related to the plan delivered to the homogeneous phantom and in blue the deviations related to the plan delivered to the head phantom.

Figure 1: End-to-end test procedure with the head phantom. Top left: the loading of the phantom with alanine pellets and EBT3 films. Top right: the treatment plan preparation in the TPS. Bottom: the positioning and position verification with x-rays as well as the irradiation with scanned proton beams at IR3HBL.

## Conclusion

The innovative dosimetry audit method presented was successfully performed at 5 proton therapy centers in Europe including various vendors for "turn-key" solutions like IBA, Varian and Mevion. For the homogeneous polystyrene phantom all deviations from the TPS dose are within 2.5% both for alanine and Farmer chamber. For the head phantom all the deviations from the TPS dose are within 2.7% both for alanine and Farmer chamber. The two systems based on alanine dosimetry and Farmer ionization chamber dosimetry showed high consistency at all the proton facilities with an average deviation of  $-0.5 \pm 0.6$ % and maximum deviation -1.2% (see fig. 3). The observations and analysis of audits performed at 5 centers have not indicated any major concerns regarding the local practices for the specific aspects of dosimetry for scanned proton beam delivery. Successful completion of dosimetry audit based on E2E tests may also serve in future as a dosimetric credentialing for clinical trials.

#### **References:**

**Author Contacts:** ☑ antonio.carlino@medaustron.at

[1] A. Ableitinger et al. Dosimetry auditing procedure with alanine dosimeters for light ion beam therapy. Radiotherapy and Oncology, 108(1):99–106, 2013. [2] A. Carlino et al. End-to-end tests using alanine dosimetry in scanned proton beams. Physics in Medicine and Biology, 63 055001 (17p), 2018